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We argue that salient experimental features of the magnetic excitations in the spin-density-wave phase of
iron-based superconductors can be understood within an itinerant model. We identify a minimal model and use
a multiband random-phase approximation treatment of the dynamical spin susceptibility. Weakly damped spin
waves are found near the ordering momentum and it is shown how they dissolve into the particle-hole
continuum. We show that ellipticity of the electron bands accounts for the anisotropy of the spin waves along
different crystallographic directions and the spectral gap at the momentum conjugated to the ordering one. We
argue that our theory agrees well with the existing neutron scattering data.
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The iron arsenide superconductors1 have opened a rapidly
developing field in the research on high Tc superconductivity.
The phase diagram of ferropnictide �FP� superconductors is
similar to that of layered cuprates and contains an antiferro-
magnetic phase at small dopings as well as a superconduct-
ing phase at larger dopings. However, parent compounds of
iron-based systems are antiferromagnetic metals rather than
Mott insulators, in contrast to the cuprates. The electronic
structure of parent compounds in the normal state consists of
two circular hole pockets of unequal size, centered around
the � point �0,0�, and two elliptic electron pockets centered
at �0, ��� and ��� ,0� points in the unfolded Brillouin
zone, which is solely based on the Fe lattice.2–4 The disper-
sions of electron and hole bands are significantly nested, i.e.,
�k

h �−�k+Qi

e where Qi is either Q1= �� ,0� or Q2= �0,��.
Such nesting is a boost for antiferromagnetism and several
researchers argued that magnetism is itinerant, and at least
partly comes from nesting.5–7 Others argued that magnetism
is almost localized and is best described by the J1-J2 model.8

Neutron-scattering measurements on parent FeAs com-
pounds revealed that magnetic order consists of ferromag-
netic chains along one crystallographic direction in an Fe
plane and antiferromagnetic chains along the other,9,10 i.e.,
the system selects Qi to be either Q1 or Q2. Sharp propagat-
ing spin-wavelike excitations have been observed near the
ordering momentum �e.g., Q1� up to energies of around 100
meV, with different velocities along the two crystallographic
directions.8,11 At larger energies, excitations become
overdamped.11 Such stripe order arises in the J1-J2 model of
localized spins for J2�0.5J1, and it was argued that such a
model can successfully describe some of the experimental
data on the spin-wave spectra, although, an unusually large
in-plane anisotropy of the antiferromagnetic exchange be-
tween nearest-neighbor spins has to be assumed.8 However,
the same stripe order also appears in the itinerant model as a
spin-density-wave �SDW� state with either Q1 or Q2 and is
stabilized by the ellipticity of the electron bands and the
interactions between the two electron pockets.7 Furthermore,
within the itinerant model, only one hole and one electron
Fermi surface �FS� is involved in the SDW mixing. The other

two FSs remain intact and give rise to metallic behavior in
the SDW phase, even at perfect nesting.

The issue we address here is whether neutron measure-
ments of magnetic excitations can be explained within the
itinerant model. This is a crucial test of the itinerant descrip-
tion of magnetism in FPs. A first step in this direction was
made in Ref. 6, who analyzed spin excitations in the SDW
phase of FPs within a two-band model with circular hole and
electron pockets. We argue that to describe anisotropic mag-
netic excitations in the SDW state one has to consider the
model consisting of one circular hole pocket centered around
the � point and two elliptic electron pockets centered around
the �� ,0� and �0,�� points of the unfolded BZ, respectively.
Based on this model, we develop a multiband random-phase
approximation �RPA� treatment of the dynamical spin sus-
ceptibility and compare the results with available experimen-
tal data. We argue that both the high-energy particle-hole
continuum and the low-energy propagating excitations can
be quantitatively reproduced within our itinerant model. We
show that the fact that only one out of two electron pockets
is involved in the SDW is responsible for the observed an-
isotropy of the spin-wave excitations along different crystal-
lographic directions.

We start from a four-band model, using the experimental
fact that the two hole FSs around the � point have quite
different sizes. We assume that one hole band interacts with
the electron bands much weaker than the other and is thus
not important for magnetism. This leads to an effective three-
band model with one circular hole pocket at �0,0� �� band�
and two elliptic electron pockets at Q1 and Q2 �� bands�

H2 = �
p,�

��p
��p�

† �p� + �p
�1�1p�

† �1p� + �p
�2�2p�

† �2p�� . �1�

We consider lattice dispersions for all three bands and set
�p

�= t��cos px+cos py�−	 and �p
�1 =
0+ t���1+
�cos�px+��

+ �1−
�cos�py��−	, �p
�2 =
0+ t���1−
�cos�px�+ �1+
�cos�py

+���−	. The parameter 
 accounts for the ellipticity of the
electron pockets. To make qualitative as well as quantitative
comparisons to experiments, we use the Fermi velocities and
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the size of the Fermi pockets based on Refs. 2 and 12. We
obtain t�=0.85 eV, t�=−0.68 eV, 	=1.54 eV, 
0
=0.31 eV, and 
=0.5. For these values, Fermi velocities are
0.5 eVa for the � band, where a is the Fe-Fe lattice spacing,
and vx=0.27 eVa and vy =0.49 eVa along x and y direc-
tions for the �1 band �vice versa for �2, we set ax=ay =a�.
The corresponding Fermi surfaces are shown in Fig. 1�a�.

The interacting part of the Hamiltonian contains density-
density interactions with small momentum transfer and mo-
mentum transfers �� ,0�, �0,��, and �� ,��. The interactions
contributing to SDW formation are �in the terminology of
Ref. 13�

H4 = � U1�p3�
† � jp4��

† � jp2���p1�

+
U3

2
�� jp3�

† � jp4��
† �p2���p1� + H.c.� . �2�

For simplicity, we treat both U1 and U3 as constants. Both
interactions involve �1 and �2 fermions and in general
give rise to two SDW order parameters �OPs� �� 1

��p	�p
† �1p+Q1��� �
 with momentum Q1= �� ,0� and �� 2

��p	�p
† �2p+Q2��� �
 with momentum Q2= �0,��. For per-

fect nesting and when �1 and �2 fermions do not interact
directly, the energy depends only on �� 1

2+�� 2
2, i.e., the order is,

in general, a combination of �� 1 and �� 2 and the ground state
is degenerate. However, ellipticity of the electron pockets
and a direct interaction between electron bands gives rise to
an additional a1�� 1

2�� 2
2 term in the energy, with a positive pref-

actor a1 �Ref. 7�. Then, the energy is minimized when either
�� 1=0 or �� 2=0, i.e., SDW order is ferromagnetic along one
direction and antiferromagnetic along the other, in agreement
with experiments. Such a state couples � fermions with only
one band of � fermions, leaving the other band intact, i.e.,
leaving one of the electron FSs unaffected by SDW.

Without loss of generality we direct �� 1 along the z axis

and set �� 2=0. The resulting mean-field Hamiltonian can be
diagonalized by a standard Bogolyubov transformation

�p� = upcp� + vpdp�,

�1p+Q1� = ��vpcp� − updp�� . �3�

where up
2 ,vp

2 = 1
2 �1�

�p
�−�p+Q1

�1

���p
�−�p+Q1

�1 �2+4�1
2
�. After the transformation,

the Hamiltonian H2+H4 becomes

HSDW
diag = �

p,�
�Ep

ccp�
† cp� + Ep

ddp�
† dp� + �p

�2�2p�
† �2p�� , �4�

where

Ep
c,d =

1

2
��p

� + �p+Q1

�1 � ���p
� − �p+Q1

�1 �2 + 4�1
2� �5�

are the new dispersions and the magnitude of the SDW
gap is determined self-consistently from �1
=−USDW�pupvp�f�Ep

c�− f�Ep
d��, where USDW=U1+U3 and

f�E� is the Fermi function.
We will follow earlier works6,14 and use a generalized

RPA approach. The dynamical susceptibility tensor in the
multiband case is defined as

�lm
st,ab�q,q�,i�� =

1

2
�

0

�

d�ei�� �
p,p�,�,,��,�

�	T�sp�
† ���tp+q���ap���

† �0�bp�−q���0�
��
l ����

m ,

�6�

where T� is the time ordering operator and quasiparticle op-
erators s , t ,a ,b are operators from either � or �1,2 bands.
Because the unit cell is doubled in the SDW state, the sus-
ceptibility is nonzero for q=q� and q=q�+Q1 �Ref. 15�.
In terms of Green’s functions we have �zz

st,ab�q , i��
=− 1

2���n
�p,�Gp�

bs �i�n�Gp+q�
ta �i�n+ i��, and ��

st,ab�q , i��

=− 1
���n

�pGp↑
bs �i�n�Gp+q↓

ta �i�n+ i��, where Gp�
st �i�n�

=−0
�d�	T�sp����tp�

† �0�
eiwn�. In order to compute the RPA
susceptibility, we also include all other interactions: the ex-
change interaction between � and � fermions and the inter-
actions between electron pockets �see Fig. 1�b��. These inter-
actions do not contribute toward SDW formation but they do
play a role in determining the structure of the spin-wave
excitations.

Spin susceptibilities ��lm
st,ab�RPA in the RPA approximation

are obtained via a Dyson equation

��lm
st,ab�RPA = �lm

st,ab + �lm
st,a�b�Ulm

a�b�,s�t��lm
s�t�,ab �7�

and the summation over repeated band indices is assumed.
The Dyson equation is schematically shown in Fig. 1�c� �de-
pending on l ,m, the series contain either ladder or bubbles�.
The solution of Eq. �7� in matrix form is straightforward

��̂lm�RPA= �̂lm�1− Ûlm�̂lm�−1. For the single-band Hubbard
model our results agree with those of Ref. 15.

We set USDW�0.52 eV for zero ellipticity, to match the
experimental TN�200 K. This yields a T=0 value of the

π−π−π

π

0

0

(a) (b)

(c)

FIG. 1. �Color online� �a� Calculated Fermi surfaces for the
three-band model. The dashed curves refer to the case of 
=0, i.e.,
complete nesting; �b� diagrammatic representations of the density-
density type interactions �c� and the Dyson equation for the RPA
spin susceptibility in the three-band model.
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SDW gap of �1�31 meV. As the interactions between elec-
tron pockets are likely smaller than between electron and
hole pockets, we set, for definiteness, U5=U2=0.5U1, U1
=U3, and Uj1=0.1Uj. We verified that the spin-wave disper-
sion around the ordering wave vector does not change in any
substantial way if we vary these numbers. In particular, when
the ellipticity parameter 
�0, we can set Uj1=0 and it will
not affect the outcome. The results of our calculations are
presented in Fig. 2 for T=0 and for several values of the
ellipticity parameter 
. Consider first the case of circular
electron pockets, 
=0, which is for magnetic properties the
same as full nesting. In this case two out of three FSs are
completely gapped, if the order parameter exceeds the
threshold value, which is the case for our �. In Fig. 2�a� we
show the calculated imaginary part of the transverse compo-
nent of the susceptibility, Im ��̂+−�q ,���RPA along the direc-
tion �0,�� to �� ,0�. Because the corresponding ground state
is degenerate, the excitation spectrum has a Goldstone mode

at the ordering momentum Q1 and another gapless mode at
Q2. This result was earlier found in Ref. 6. We also clearly
see that the excitations near the ordering momentum are
propagating up to �c�Q1�=2�1�60 meV what is expected
because both pockets separated by Q1 are gapped. Excita-
tions near Q2 are also propagating, but up to smaller ener-
gies, �c�Q2�=�1, that is consistent with the fact that only
one of the two pockets separated by Q2 is gapped. At higher
energies spin waves enter the continuum and become over-
damped Stoner-type excitations, however, still with well de-
fined peaks. The difference between �c�Q1� and �c�Q2� is
also seen in Fig. 2�c� where we plotted the longitudinal com-
ponent of the susceptibility. As expected, Im��̂+−�q ,���RPA
vanishes below �c�Q�.

At finite 
=0.5, we used a slightly larger USDW to recover
the same TN as for 
=0, which in turn leads to a slightly
larger �1. The results are presented in panels �b� and �d� of
Fig. 2. There are two key effects introduced by ellipticity.
First, the degeneracy is now broken and the transverse exci-
tations near Q2 acquire a finite gap clearly visible in Fig.
2�b�. Second, spin-wave excitations near Q1 have a finite
Landau damping down to �=0 because the SDW order no
longer completely gaps the hole and electron FSs separated
by Q1. At the same time, spin-wave excitations are still
clearly visible at low energies and do not become over-
damped. The reason is that SDW coherence factors suppress
the scattering between � and �1 fermions and reduce the
Landau damping around the ordering momentum Q1 from
� / �q−Q1� to ��q−Q1� what for linear dispersion is of the
same order as �2 and �q−Q1�2. Within the one-band model,
this effect has been discussed in Ref. 16. Once � exceeds
�c�Q2�, the coherence factors no longer screen Landau
damping, and spin waves become Stoner-type, overdamped
excitations. The scattering between c and �2 fermions is not
suppressed by the SDW coherence factors because Q2 is not
the ordering momentum, therefore, Landau damping makes
the transverse excitations near Q2 overdamped immediately
above the gap. Note, that there is also a tendency toward
incommensuration near Q2. Longitudinal excitations are still
gapped up to �c�Q� and become Stoner-type at higher ener-
gies, as is clearly seen in Fig. 2�d�.
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FIG. 2. �Color online� Calculated imaginary part of the trans-
verse �upper panel� and longitudinal �lower panel� component of
the physical RPA spin susceptibility as a function of frequency and
momentum �plotted along �0,��→ �� ,0� points of the BZ� for
�a�–�c� 
=0 and �b�–�d� 
=0.5. The color bars refer to the intensity
in units of st./eV. For numerical purposes we set the damping con-
stant =1 /300 eV.
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FIG. 3. �Color online� Left panel: calculated Im �RPA
+− as a function of frequency and momentum �plotted along �0,2��→ �0,��

→ �� ,�� directions of the BZ� for 
=0.5. The crosses and circles are the measured points taken from Refs. 11 and 8, respectively. Right
panel: calculated constant energy cuts of Im �+−�q ,�� along �0,0�→ �� ,0�→ �2� ,0� direction �solid curves� for �a� 25, �b� 48, �c� 64, �d�
100, �e� 115, �f� 135, and �g� 144 �all in meV�. The experimental data are taken from Ref. 8. The intensity maxima have been adjusted to the
experimental values.
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Despite the fact that our model is indeed a simplification
of the actual five-band model for FPs, it reproduces quite
well the experimental data for the magnetic excitations. First,
the excitations near the “wrong” momentum Q2 are gapped
up to about 50 meV as seen in Fig. 2�b�. Second, measured
excitations near Q1 are propagating spin waves up to about
100 meV with a finite but small damping. In the left panel of
Fig. 3 we compare our dispersion with the experimental
data.8,11 We emphasize that both the measured and the calcu-
lated spectra have different velocities along different crystal-
lographic directions. In our theory, it is a consequence of the
nonzero ellipticity and the fact that only one electron pocket
is involved in the SDW formation. Remarkably, for 
=0.5
the anisotropy is the same as in the experimental data. An-
other verifiable theory prediction for this range is that the
width of the spin-wave peak should scale as �2. Third, we
find that excitations are still visible even when the spin
waves enter the continuum. In the right panel of Fig. 3 we
compare the calculated and the measured Im �+−�q ,�� along
�0,0�→ �� ,0�→ �2� ,0� direction for different �. We see
that the agreement is quite good for all frequencies even
above �c

17.
In this paper we analyzed the structure of the magnetic

excitations in the magnetically ordered state of Fe pnictides.

We used a multiband itinerant model and developed a multi-
band RPA treatment of the longitudinal and transverse com-
ponents of the dynamical spin susceptibility. We found
weakly damped spin waves near the ordering momentum and
showed how they dissolve into the particle-hole continuum
above an energy which scales with the SDW order param-
eter. For perfect nesting between electron and hole bands the
SDW state has an extra degeneracy, and we found an extra
gapless mode at the momentum different from the ordering
one. When ellipticity of the electron bands is included, the
degeneracy is lifted and the extra mode becomes gapped.
Ellipticity of the electron pockets also naturally accounts for
the anisotropy of the spin waves along different crystallo-
graphic directions. We argue that our theory agrees well with
the available neutron-scattering data.
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